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Abstract. We introduce a new nonextensive entropic measure Sχ that grows like Nχ, where N is the size
of the system under consideration. This kind of nonextensivity arises in a natural way in some N-body
systems endowed with long-range interactions described by r−α interparticle potentials. The power law
(weakly nonextensive) behavior exhibited by Sχ is intermediate between (1) the linear (extensive) regime
characterizing the standard Boltzmann-Gibbs entropy and (2) the exponential law (strongly nonextensive)
behavior associated with the Tsallis generalized q-entropies. The functional Sχ is parametrized by the
real number χ ∈ [1, 2] in such a way that the standard logarithmic entropy is recovered when χ = 1.
We study the mathematical properties of the new entropy, showing that the basic requirements for a well
behaved entropy functional are verified, i.e., Sχ possesses the usual properties of positivity, equiprobability,
concavity and irreversibility and verifies Khinchin axioms except the one related to additivity since Sχ is
nonextensive. For 1 < χ < 2, the entropy Sχ becomes superadditive in the thermodynamic limit. The
present formalism is illustrated by a numerical study of the thermodynamic scaling laws of a ferromagnetic
Ising model with long-range interactions.

PACS. 05.20.-y Classical statistical mechanics – 05.20.Gg Classical ensemble theory – 02.70.Lq Monte
Carlo and statistical methods 75.10.Hk Classical spin models

1 Introduction

There is nowadays an intense research activity on the
mathematical properties and physical applications of new
versions of the Maximum Entropy Principle based on gen-
eralized or alternative entropic functionals [1–18]. This
line of inquiry has been greatly stimulated by the work
of Tsallis, who showed that it is possible to build up
a mathematically consistent and physically meaningful
generalization of the standard Boltzmann-Gibbs-Jaynes
thermostatistical formalism on the basis of a nonexten-
sive entropic measure [1]. The main motivation behind
Tsallis proposal is that there are important physical sce-
narios, such as self-gravitating systems [19,20], electron-
plasma two dimensional turbulence [21], among many oth-
ers, which are characterized by a nonextensive behavior:
due to the long range of the relevant interactions some
of the thermodynamic variables usually regarded as addi-
tive, such as the internal energy, lose their extensive char-
acter. This suggests that a nonextensive (non-additive)
entropy functional might be appropriate for their ther-
mostatistical description. The Jaynes’ maximum entropy
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approach to statistical mechanics [22,23] suggests in a nat-
ural way the possibility of incorporating alternative en-
tropy functionals to the variational principle. The new
entropy functional introduced by Tsallis has the form [1]

Sq =
1

q − 1

(
1−

w∑
i=1

pqi

)
, (1)

where (pi, i = 1, . . . , w) are the microstate proba-
bilities describing the system under consideration and
the entropic index q is any real number. The standard
Boltzmann-Gibbs entropy S = −

∑w
i=1 pi ln pi is recov-

ered in the limit q → 1. The measure Sq is nonextensive.
The entropy of a composite system A⊕B constituted by
two subsystems A and B, independent in the sense that
p

(A⊕B)
ij = p

(A)
i p

(B)
j , verifies the Tsallis’ q-additive relation

Sq(A⊕B) = Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B). (2)

We see from the above equation that the Tsallis’ param-
eter q can be regarded as a measure of the degree of
nonextensivity. Many relevant mathematical properties of
the standard thermostatistics are verified by the Tsallis’
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generalized formalism or can be appropriately general-
ized [1,18]. Self-gravitating systems constituted the first
physical problem discussed within Tsallis’ nonextensive
thermostatistics [20] and Tsallis’ theory has recently been
applied to other physical problems [24–29]. One of the
main consequences of the intensive effort devoted in re-
cent years to the study of Tsallis theory is that there is
now a growing consensus that there are many problems
in statistical physics, biology, economics, and other areas,
where a generalization of the standard approach based on
Boltzmann-Gibbs-Jaynes extensive entropy might be use-
ful. A comprehensive bibliography on the current research
literature on Tsallis’ theory and the statistical physics of
nonextensive systems can be found in [30,31].

Inspired on Tsallis’ pioneering proposal, various
nonextensive entropic measures endowed with interesting
properties have been recently advanced [6–12]. Moreover,
it has been proven that some physically relevant mathe-
matical properties are shared by large families of entropic
measures [3,4]. The aim of the present work is to explore
the possibility of developing a new thermostatistical for-
malism different from the Tsallis one. Our proposal is
based on a nonadditive entropic functional characterized
by a degree of nonextensivity weaker than the one exhib-
ited by Tsallis measure. As we shall see, Tsallis entropy
varies exponentially with the size of the system under con-
sideration, while the new measure introduced here only
scales as a power of the size of the system. That is to say,
our proposal is tantamount of considering a nonextensive
regime intermediate between (1) the standard extensive
one associated with Boltzmann-Gibbs entropy, and (2)
the exponentially nonextensive one described by Tsallis
formalism.

There is an important physical motivation for intro-
ducing an entropy endowed with power law nonexten-
sivity. Systems with long range interactions constitute
the physical scenarios where the need of a generalization
of the standard thermostatistical formalism can be more
clearly appreciated. Consider a system of N particles in
a d-dimensional (one particle) configuration space. If the
dependence of the interparticle potential with the inter-
particle distance r is given by r−α, it can be shown [32]
that the system’s energy levels scale as NÑ , where

Ñ =
N1−α/d − α/d

1 − α/d
· (3)

Hence, for large N , the internal energy scales as a power
of the size of the system. That is,

E ∼ N2−α/d (4)

In the case of extensive systems governed by short-range
interactions, the internal energy E and the entropy S scale
in the same way: they both grow linearly with N . On the
other hand, the temperature T is an intensive variable
and does not change with N . How can these scaling laws
be generalized to the non-extensive setting? A possible
path towards the alluded generalization starts with the

Helmholtz free energy,

F = E − TS. (5)

From the above expression it seems reasonable to expect
both E and TS to scale in the same fashion [32]. The only
way to fulfill this expectation, if the standard extensive
entropy is used, is to require that the temperature scales
as [32,33]

T ∼ Ñ ∼ N1−α/d, (6)

losing its intensive character.
It would be very appealing to have, within the nonex-

tensive scenario, an entropy Sχ endowed with the same
scaling law as the one exhibited by the energy. If, as it
occurs for extensive systems, the entropy and the energy
behave in the same way, the temperature would still be
an intensive quantity. What we need in order to have
a thermostatistical formalism with these nice properties
is an entropy functional with power law nonextensivity,
scaling as

Sχ ∼ Nχ ∼ N2−α/d. (7)

From the above discussion it is clear that we are going
to assume that the exponent χ appearing in the entropic
scaling law is related with d and α by

χ = 2 − α/d, (8)

so that the physically motivated range of values for χ is

1 ≤ χ ≤ 2. (9)

The purpose of this work is to study the basic prop-
erties of a possible candidate for a weakly-nonextensive
thermostatistics, based on a new non-additive entropy dif-
ferent from the Tsallis q-entropy, and to consider its ap-
plication to a magnetic system with long-range interac-
tions. The paper is organized as follows. In Section 2 the
exponential behavior of Tsallis entropy is analyzed and
a power–law weakly nonextensive entropy is introduced.
The basic mathematical properties of the new measure are
studied in Section 3. Two–state systems are considered
in Section 4. In Section 5 the weakly nonextensive en-
tropy is applied to a ferromagnetic Ising model with long-
range interactions. Finally, some conclusions are drawn in
Section 6.

2 Exponential vs. power law nonextensivity

2.1 Tsallis entropy and exponential nonextensivity

The nonextensive behavior of Tsallis functional, encapsu-
lated in equation (2), is the most important single prop-
erty distinguishing Tsallis measure from the standard ad-
ditive logarithmic entropy. An important consequence of
relation (2) that has not been fully appreciated in the liter-
ature is that Tsallis entropy may vary exponentially with
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the size of the system. In order to clarify the above asser-
tion let us consider the Tsallis entropy Sq of a composite
system A = ⊕Nj=1A

(j) consisting on N identical and inde-
pendent subsystems {A(j), j = 1, . . .N}. Let us assume
that each subsystem has M microstates and is character-
ized by the same set of probabilities (p̃i, i = 1, . . .M).
The entropy Sq(⊕Nj=1A

(j)) ≡ Sq(N) associated with the
composite system is then given by

Sq(N) =
1

q − 1

{
1 −

∑
i1...iN

(p̃i1 . . . p̃iN )q
}
, (10)

where each subindex ik under the summation sign runs
from 1 to M . Since each subsystem is characterized by
the same probabilities, the above expression can be cast
under the guise

Sq(N) =
1

q − 1

1 −
(

M∑
i=1

p̃ qi

)N , (11)

which leads to

Sq(N) =
1

q − 1
{

1 − [1 + (1− q)Sq(1)]N
}
, (12)

where

Sq(1) =
1

q − 1

(
1 −

M∑
i=1

p̃ qi

)
(13)

is the Tsallis entropy associated with each individual
subsystem.

The expression (12) is valid for any probability dis-
tribution (p̃1, . . . p̃M ) characterizing the individual sub-
systems. Let us consider the simplest case corresponding
to subsystems with only two states (M = 2) character-
ized by an equiprobability distribution (p̃i = 1/M, i =
1, . . . ,M). A system of N noninteracting spins consti-
tutes an example of this situation. The explicit expres-
sion for the entropy of each subsystem is then Sq(1) =
(21−q − 1)/(1 − q), and the Tsallis measure correspond-
ing to the composite system adopts the value (for q < 1
and large N),

Sq ∼
1

1− q 2(1−q)N . (14)

If q > 1 the q-entropy tends to the constant limit value
1
q−1 as N → ∞. We are going to consider only the q < 1
regime. In that case the Tsallis entropy exhibits an expo-
nential behavior as a function of the size N of the system.
We have shown in [36] that Tsallis entropy in Ising models
with long–range and short–range interactions follows the
same exponential behavior with the size N of the system.

2.2 Power law nonextensive entropy

We believe that it is worth exploring the possibility of
a thermostatistical formalism based on a nonextensive

entropy Sχ growing as a power Nχ of the size of the
system, instead of growing exponentially. In accordance
with the physical arguments discussed in the Introduction
(see Eqs. (8, 9)), we shall restrict our considerations to
values of χ ∈ [1, 2]. Let us assume that the functional Sχ
associated with a given discrete probability distribution
{pi, i = 1, . . . , w} is given by

Sχ(p1, . . . , pw) =
w∑
i=1

φχ(pi), (15)

φχ(pi) being an appropriate function of the individual mi-
crostate probabilities pi. Notice that the entropy given by
equation (15) is a symmetric function of the probabilities
pi. In order to find a suitable expression for the function
φχ(z) it is enough to consider again the equiprobability
distribution associated with a collection of N identical
independent two–state subsystems. In that case we have
w = 2N and

Sχ = wφχ(1/w)
= 2Nφχ(2−N )
∼ Nχ, (16)

which implies

φχ(2−N ) ∼ 2−NNχ. (17)

The simplest choice for a function φχ(z) complying with
the above relation is

φχ(z) = z(− ln z)χ. (18)

Unfortunately, this function is not adequate for our pur-
poses. Its second derivative d2φχ/dz2 lacks a definite sign
within the relevant range of values of z and χ, leading
thus to an entropy functional without a definite concav-
ity. However, since we are only interested in the large N
asymptotic regime, any function φχ(z) behaving like (18)
in the limit z → 0 would do. As we shall see, the function

φχ(z) =
1
2

[
z(− ln z)χ + z(− ln z)1/χ

]
(19)

leads to the measure

Sχ =
1
2

w∑
i=1

[
pi(− ln pi)χ + pi(− ln pi)1/χ

]
, (20)

which complies with all the basic properties of a well be-
haved entropy. It is clear that in the case χ = 1 the stan-

dard entropy S1 = −
w∑
i=1

pi ln pi is recovered.

The optimization of Sχ under the constraints imposed
by normalization,

w∑
i=1

pi = 1, (21)



682 The European Physical Journal B

0.1

0.2

0.3

0.4

0.5

0.6

0.7

z

-2.07944 -1.38629 -0.693147 0 0.693147 1.38629 2.07944
logx

0.5

0.3

0.1

1 2 4 80.50.250.125

0.7

χ

z

Fig. 1. The real roots of φ′′χ(z) = 0 as a function of χ. There are
no real roots within the interval [1/χc, χc], where χc ≈ 2.1762.

and the mean values

〈A(r)〉 ≡
w∑
i=1

piA(r)
i = A(r)

χ (r = 1, . . . , R)

(22)

of a given set {A(r)} of observable leads to the variational
problem

δ

{
Sχ −

R∑
r=1

βr〈A(r)〉 − α
w∑
i=1

pi

}
= 0, (23)

whose solution is of the form

pi = F

(
α+

R∑
r=1

βrA(r)
i

)
i = 1, . . . , w. (24)

Here α and {βr} are appropriate Lagrange multipliers
and F (z) is the inverse function of

φ′χ(z) =
1
2

{
(− ln z)χ + (− ln z)

1
χ

−χ(− ln z)χ−1 − 1
χ

(− ln z)
1
χ−1

}
, (25)

which verifies the relation

F [φ′χ(z)] = φ′χ[F (z)] = z. (26)

The function F (z) is well defined because the second
derivative of φχ(z) is negative,

d2φχ
dz2

=
1
2z
[
χ(χ− 1)(− ln z)χ−2

+
1
χ

(
1
χ
− 1
)

(− ln z)
1
χ−2

− χ(− ln z)χ−1 +
1
χ

(− ln z)
1
χ−1

]
< 0, (27)

0

0.2

0.4

0.6

0.8

1

-2 0 2 4 6

F(
z)

z

χ=2.0

χ=1.0

0

0.2

0.4

0.6

0.8

1

-2 0 2 4 6

F(
z)

z

χ=2.0

χ=1.0

0

0.2

0.4

0.6

0.8

1

-2 0 2 4 6

F(
z)

z

χ=2.0

χ=1.0

0

0.2

0.4

0.6

0.8

1

-2 0 2 4 6

F(
z)

z

χ=2.0

χ=1.0

0

0.2

0.4

0.6

0.8

1

-2 0 2 4 6

F(
z)

z

χ=2.0

χ=1.0

Fig. 2. The function F (z) defined by the equations (25, 26)
for χ = 1.0, 1.25, 1.5, 1.75, 2.0.

for 0 < z < 1, and 1 < χ < 2. Actually, φ′′χ(z) has a def-
inite (negative) sign within the larger interval [1/χc, χc],
where χc ≈ 2.1762. This can be appreciated in Figure 1,
where the real roots of φ′′χ(z) = 0 are depicted as a func-
tion of χ. We see that there are no real roots χ ∈ [1/χc, χc].

It is important to realize that the lack of a simple ana-
lytical expression for the function F (z) does not constitute
a serious conceptual problem, nor does it pose any practi-
cal difficulty for the numerical treatment of problems in-
volving the Jaynes’ maximum entropy distributions (24).
The form of the function F (z) is shown in Figure 2.

The canonical ensemble probability distribution asso-
ciated with the entropy Sχ,

pi = F (α + βεi), (28)

is obtained when the Sχ is extremalized under the con-
straints of normalization and the mean value of the energy,

〈U〉 =
∑
i

piεi, (29)

where εi stands for the energy of the microstate i. The La-
grange multiplier β appearing in (28) is the one associated
with the energy constraint and corresponds, within the
present thermostatistical formalism, to the inverse tem-
perature. That is, taking Boltzmann constant k = 1, we
have β = 1/T .

3 Main properties of the new entropy

3.1 Khinchin axioms

Khinchin proposed a set of four axioms [34], which are
usually regarded as reasonable requirements for a well be-
haved information measure. Our entropy measure Sχ ver-
ifies the first three of them:

(i) Sχ = Sχ(p1, . . . , pw),
i.e., the entropy is a function of the probabilities pi
only.
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(ii) Sχ(p1, . . . , pw) ≤ Sχ( 1
w , . . . ,

1
w ) ≡ Sequipr.

χ (w),
i.e., Sχ adopts its extreme at equiprobability (this
property will be proved in Sect. 3.2).

(iii) Sχ(p1, . . . , pw) = Sχ(p1, . . . , pw, pw+1 = 0),
that is, the entropy of a system does not change if
we incorporate a new microstate with zero probabil-
ity. This property, known as expansibility, is clearly
verified since φχ(0) = 0.

(iv) The fourth Khinchin axiom concerns the behavior
of the entropy of a composite system in connection
to the entropies of the subsystems. We will comment
on this axiom later.

3.2 General mathematical properties

Let us now consider the properties related to pos-
itivity, certainty, concavity, equiprobability, additivity
and irreversibility, which are some of the most impor-
tant features characterizing an information or entropic
measure [1,8,12,13].

3.2.1 Positivity

It is plain from equation (19) that φχ(0) = φχ(1) = 0
and also that φχ(p) ≥ 0 for p ∈ [0, 1]. This implies the
positivity condition

Sχ ≥ 0. (30)

3.2.2 Certainty

The equality symbol in equation (30) holds only at cer-
tainty, that is, when one microstate has probability one
and all the other microstates have zero probability,

Sχ(1, 0, . . . , 0) = Sχ(0, 1, . . . , 0) = . . . = 0. (31)

Indeed, Sχ vanishes if and only if we have certainty.

3.2.3 Concavity

Considering (p1, . . . , pw) as independent variables, the
second partial derivatives of Sχ are

∂2Sχ
∂pj∂pk

=
∂2Sχ
∂2pj

δjk < 0 for 0 < pj < 1. (32)

Expression (32) guarantees definite concavity over
probability space (see, for instance, [23]).

3.2.4 Equiprobability

The probability distribution that extremizes Sχ under the
normalization constraint is

pi = F (α) = 1/w (33)

Therefore, since Sχ has negative concavity, it is maximal
at equiprobability. A well behaved entropy should also be,
at equiprobability, a monotonically increasing function of
the number of states w. For large w we have Sχ(w) ∼
(lnw)χ. Therefore, for large values of w, Sequipr.

χ (w) is an
increasing function of w.

3.2.5 Nonextensivity

The nonextensive behavior of the entropy Sχ is deter-
mined by the relation of the entropy of a composite
system with the individual entropies of its constituent
subsystems. Let us consider systems A and B with
associated probabilities {ai, i = 1, . . . , wA} and {bj, j =
1, . . . , wB}, respectively. If systems A and B are inde-
pendent, i.e., the composite system A⊕B has associated
probabilities {aibj ; i = 1, . . . , wA; j = 1, . . . , wB}, then
the entropy Sχ(A⊕B) of the composite system minus the
sum of the entropies of its subsystems,

∆Sχ(A,B) ≡ Sχ(A⊕B)− Sχ(A)− Sχ(B) (34)

is the quantity characterizing the nonextensive features of
the measure Sχ. When ∆Sχ(A,B) > 0 (∆Sχ(A,B) < 0)
we have superadditivity (subadditivity). From the exami-
nation of particular examples we conclude that ∆Sχ(A,B)
does not have always the same sign. However, the region
of probability space where ∆Sχ(A,B) is positive is much
larger than the region where that quantity is negative.
Furthermore, if we consider N identical subsystems (in-
stead of just two of them), the region of probability space
corresponding to subadditive behavior tends to vanish as
N grows. Consequently, the entropy Sχ becomes superex-
tensive in the thermodynamic limit. Particular examples
illustrating these features of the measure Sχ are provided
in Section 4. Moreover, in Section 5 we are going to con-
sider the nonextensivity of Sχ in connection with the ther-
modynamic properties of an Ising model endowed with
long–range interactions.

3.2.6 Irreversibility

One of the most important roles played by entropic func-
tionals within theoretical physics is to characterize the
“arrow of time”. When they verify an H-theorem, they
provide a quantitative measure of macroscopic irreversibil-
ity. We will now show, for some simple systems, that the
present measure Sχ satisfies an H-theorem, i.e., its time
derivative has a definite sign.

Let us calculate the time derivative of Sχ

dSχ
dt

=
w∑
i=1

dpi
dt
φ′χ(pi), (35)

for a system whose probabilities pi evolve according to the
master equation

dpi
dt

=
w∑
j=1

[Pjipj − Pijpi], (36)
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Fig. 3. Entropy Sχ for a two-state system (w = 2) as a
function of p for different values of χ indicated on the figure.

where Pij is the transition probability per unit time be-
tween microscopic configurations i and j. Assuming a sys-
tem with a uniform equilibrium distribution and detailed
balance, i.e., Pij = Pji, we obtain from (35)

dSχ
dt

=
1
2

w∑
i=1

w∑
j=1

Pij (pi − pj)
(
φ′χ(pj) − φ′χ(pi)

)
.

(37)

Since φ′′χ(pi) < 0, the quantities (pi − pj) and (φ′χ(pj) −
φ′χ(pi)) have the same sign. Then we obtain

dSχ
dt
≥ 0. (38)

The equality holds for equiprobability, i.e., at equilibrium,
while in any other cases the entropy Sχ increases with
time. Therefore, Sχ exhibits irreversibility.

3.2.7 Jaynes thermodynamic relations

It is noteworthy that, within the present Jaynes’ maxi-
mum entropy formalism, the usual thermodynamical rela-
tions involving the entropy, the relevant mean values, and
the associated Lagrange multipliers, i.e.,

∂Sχ
∂〈A(r)〉 = βr (39)

are verified. Hence, our formalism exhibits the usual ther-
modynamical Legendre transform structure. Actually, this
property is verified by a wide family of entropy function-
als [3,4]. A particular important example of (39) is fur-
nished by the canonical ensemble thermodynamic relation

∂Sχ
∂〈U〉 = β =

1
T
· (40)

Fig. 4. The subadditivity and superadditivity of Sχ. The quan-
tity (∆Sχ)rel. as a function of p and q, for a composite system
constituted by the independent two-state subsystems A (with
associated probabilities {q, 1 − q}), and B (with associated
probabilities {p, 1− p}).

4 Two-state systems

In order to illustrate some of the above properties, we
consider a two-state system (with associated probabilities
{p, 1− p}). In this case, Sχ only depends on the variable
p. In fact, from its definition, we have

Sχ(p) =
1
2

[
p(− ln p)χ + p(− ln p)

1
χ

+ (1− p)(− ln(1− p))χ

+ (1− p)(− ln(1− p)) 1
χ

]
, (41)

The shape of Sχ(p) for different values of χ is shown in
Figure 3, which exhibits the positivity and concavity of Sχ.
In fact, from expression (41), the first derivative of Sχ(p)
vanishes at p = 1/2 and d2Sχ/dp2 < 0 ∀p ∈ [0, 1]. Since
the second derivative is always negative, Sχ(p) is maxi-
mal at equiprobability. Moreover, as shown in the general
case, taking into account the concavity of Sχ and that Sχ
vanishes at the certainty, then Sχ is positive for all p.

The non-additivity of Sχ is illustrated in Figure 4 for
two independent two-state systems A (with probabilities p
and 1−p) and B (with probabilities q and 1− q), through
the plot of the relative difference

(∆Sχ)rel. = [Sχ(A⊕B)− (Sχ(A) + Sχ(B))]/Sχ(A⊕B)
(42)

as a function of p and q. For most values of p and q the
nonextensive measure Sχ behaves in a superadditive fash-
ion. Only for values lying in a small region near the edges
of the (p, q)−square does Sχ become subextensive.

The nonextensive behavior of Sχ in the thermody-
namic limit can be illustrated by recourse to a system
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Fig. 5. The superadditivity of Sχ in the thermodynamic limit.
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2 ,
1
2} along

with one extra two-state subsystem with probabilities p and
(1− p).

constituted by N two-state subsystem. Let us first as-
sume that each one of the subsystems is described by the
same probabilities p and (1−p). Consequently, the entropy
associated with the composite system is

Sχ(N) =
1

2N

N∑
k=0

(
N

k

)
pk(1− p)N−k

×
[(
− ln(pk (1− p)N−k)

)χ
+
(
− ln(pk (1− p)N−k)

) 1
χ

]
(43)

It can be shown after some algebra that, for 0 < p < 1,

[− ln(1− p)]χNχ < Sχ(N)

< [− ln p]χNχ + [− ln p]1/χN1/χ. (44)

Hence, for any given value of p ∈ (0, 1/2) there exist an
M such that

N > M =⇒ Sχ(N) > NSχ(1), (45)

which means that Sχ becomes superadditive for large
enough values of N . This is shown in Figure 5a , where
the quantity

(∆Sχ)rel. = [Sχ(N) − NSχ(1)]/Sχ(N) (46)

is depicted for different values of N . In a similar way,
Figure 5b shows the behavior of (∆Sχ)rel. as a function
of p for a composite system consisting of N − 1 two-state
subsystems each with probabilities { 1

2 ,
1
2} along with one

extra subsystem with probabilities p and (1− p).

5 Ferromagnetic Ising model with long-range
interactions

In this section we apply the canonical thermostatistics as-
sociated with the entropy Sχ to an N -body system de-
scribed by an r−α interparticle potential. The energy of
this kind of systems scales as a power of the number
of particles [32]. The consideration of systems exhibit-
ing this power-law nonextensivity constituted our main
motivation for introducing the measure Sχ. As argued
in Section 1, an entropy endowed with the same non-
extensive behavior as the one associated with the energy
may lead to a thermostatistical description preserving the
intensive character of the temperature. In order to illus-
trate these ideas we are going to study a long-range Ising
model described by the Hamiltonian

H = J
N∑

i,j=1

1 − SiSj
rαij

, (Si = ±1,∀i), (47)

where J is an appropriate coupling constant, and the sum
runs over all the pairs of sites on a d-dimensional lat-
tice with periodic boundary conditions and rij stands for
the distance between the sites i and j. It is clear that
the range of the interaction is determined by the value
of the exponent α. In particular, the standard (short-
range) first-neighbors interaction is recovered in the limit
α → ∞, while the mean field approximation is obtained
when α = 0 (replacing J by J/N). These extreme cases
illustrate, respectively, the two possible thermodynamic
behaviors that, according to the value of α, are admitted
by the system (47). On the one hand we have the exten-
sive regime corresponding to α > d. On the other hand
we have the non-extensive regime associated with α < d.
In order to clarify this let us estimate the internal energy
per particle at zero temperature. We have [32]

E

N
∼
∫ ∞

1

dr rd−1r−α. (48)

It is easy to see that the above integral converges if α > d
and diverges if 0 ≤ α ≤ d. The following is a standard
notation used in previous works:

Ñ ≡ 1 +
1
d

∫ N1/d

1

dr rd−1r−α =
N1−α/d − α/d

1− α/d , (49)
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Here we consider the non–extensive regime for the one–
dimensional case d = 1 and α = 0.8. We have performed
numerical simulations by using a novel approach recently
introduced [2] to study systems with long range interac-
tions governed by generalized entropies as the one consid-
ered here. The method relies upon the calculation of the
number of states, Ω(εk), with a given energy εk.

Note that, the number of possible configurations and
associated probabilities pi is in general very large,W = 2N
for Ising models for example. However the number of per-
mitted energies or energy levels K is not so large, because
there is a large number of states Ω(εk) sharing the same
energy εk. We can rewrite the sums in equations (20, 29)
taking into account theK energy levels weighted byΩ(εk):

Sχ =
1
2

K∑
k=1

Ω(εk)p(εk) (50)

×[(− ln p(εk))χ + (− ln p(εk))1/χ],

〈O〉 =
K∑
k=1

Ω(εk)p(εk)O(εk). (51)

Hence, the knowledge of the number of states Ω(εk) al-
lows, by the use of these expressions, the calculation of
the entropy and any averages of interest.

To calculate the probabilities p(εk) we use the defini-
tion p(εk) = F (α+βεk), where the function F is compute
numerically as the inverse function of φ′χ(z) (see Fig. 2).

To compute the histogram Ω(εk), the “Histogram by
Overlapping Windows (HOW)” method [2,35,36] is used.
A naive way of computing the histogram consists in
generating different system configurations randomly and
counting how many times a configuration with energy εk
appears. However, since the Ω(εk) values span too many
orders of magnitude it is not possible to find in this way
a histogram over all the energy levels. The HOW method
avoids this problem by generating system configurations
only in a restricted energy interval and estimating the rel-
ative weights Ω(εk)/Ω(εl) of these energy levels from the
number of times they appear in the sample. From the over-
lap between energy intervals, one gets the complete Ω(εk)
function, apart from an irrelevant normalization factor.
Details about the HOW method can be found in [35,36].

Finally we note a particularity of this new formalism,
which is that the determination of the α constant from the
normalization condition

∑w
i=1 pi = 1, requires to solve the

following equation

K∑
k=1

Ω(εk)F (α+ βεk) = 1, (52)

where εk, β, Ω(εk) are input data for the equation. This
equation for α was solved numerically using a dichotomic
searching method.

Using the described procedure we have calculated the
dependence over the temperature T of the internal en-
ergy E(N,T ), spontaneous magnetization M(N,T ) =
|
∑N
i=1 si |, entropy S(N,T ) and free energy F (N,T ) =

E−TS for the one–dimensional long–range Ising model in
the non–extensive regime α = 0.8 and the corresponding
value χ = 1.2 in the equation (8).

This system has been recently studied within the stan-
dard Boltzmann–Gibbs thermostatistics [33], as well as
within Tsallis non–extensive q–formalism [2]. In [33] it
was numerically verified that the scaling laws of the main
thermodynamical quantities associated with the Gibbs
canonical ensemble are

E(N,T )/(NÑ) = e(T/Ñ),

M(N,T )/N = m(T/Ñ),

S(N,T )/N = s(T/Ñ),

F (N,T )/(NÑ) = f(T/Ñ). (53)

Since the energy and the entropy scale in different ways,
the temperature T has to be scaled as T/Ñ . A similar
situation arises within Tsallis q-generalized formalism, the
concomitant scaling laws being [2]

Eq(N,T )/(NÑ) = e(TAEq (N)/(NÑ)),

Mq(N,T )/N = m(TAEq (N)/(NÑ)),

Sq(N,T )/(Aq(N)) = s(TASq (N)/(NÑ)),

Fq(N,T )/(NÑ) = f(TAq(N)/(NÑ)), (54)

where [2]

Aq(N) = (2N(1−q) − 1)/(1− q),
ASq (N) = (2N |1−q| − 1)/|1− q|,
AEq (N) = Aq(N)2/ASq (N). (55)

The scaling laws corresponding to the generalized χ-
canonical ensemble associated to the weakly nonextensive
entropy Sχ are,

E(N,T )/(NÑ) = e(TRχ(N)),
M(N,T )/N = m(TRχ(N)),

Sχ(N,T )/(Nχ +N1/χ) = s(TRχ(N)),

F (N,T )/(NÑ) = f(TRχ(N)), (56)

where

Rχ(N) =
Nχ + N1/χ

Nχ − (2− χ)N
· (57)

It is plain from the above equation that

lim
N→∞

Rχ(N) = 1, (58)

so that for large enough values of N the scaling laws (56)
become

E(N,T )/(Nχ) = e(T ),
M(N,T )/N = m(T ),

S(N,T )χ/(Nχ) = s(T ),
F (N,T )/(Nχ) = f(T ). (59)
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Fig. 6. Plot of (a) the internal energy and (b) the magneti-
zation as a function of the scaled temperature. In the insert
of (b) we plot with solid line the behavior of the scaling fac-
tor Rχ(N) for all the N values and by points for the actual
simulated sizes N = 100, 400, 1 000, 2 000, 3 000. We use here
χ = 1.2.

According to the above equations, the thermodynamic
curves of the Ising models (47) computed with increasing
N -values must collapse without the need of a temperature
rescalation. Numerical evidence of this scaling behavior is
provided by Figures 6, 7. It must be realized, however, that
the N -values used are not large enough to see a complete
collapse of the curves depicted. In order to reach complete
collapse we need Rχ(N) ≈ 1 (see the insert of Fig. 6b).
We plot in Figure 6 the scaled curves for the internal en-
ergy and magnetization using the equations (56). In the
insert of that plot we see the asymptotical behavior for the
scaling factor Rχ(N), and with points we indicate the sizes
plotted N = 100, 400, 1 000, 2 000, 3 000. Unfortunately we
would need very large sizes N ∼ 108 to observe an actual
scaling without any scale factor, that is Rχ ∼ 1. How-
ever from the Figure 6 one can see that there is an actual
tendency to the collapse. In fact we expect that the final
universal curves will resemble to those corresponding to
N = 2 000, 3 000 and we see in the Figure 6a tendency
towards a complete collapse.

Also in Figure 7 we show the collapse for the entropy
in the main plot with the scaled relations equations (56)
and in the insert without scaling. In addition we can see
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Fig. 7. Plot of the entropy Sχ as a function of the scaled
temperature for the indicated system sizes. In the insert we
plot the expected no scale temperature behavior.

in this plot the actual superadditive behavior of the new
entropy in an interacting system instead of the simple N
independent two states systems of the last section.

6 Conclusions

We have shown that the entropy functional Sχ verifies the
main properties usually regarded as essential requirements
for physically meaningful entropy functionals [1,8,12,13].
The entropy Sχ verifies the first three Khinchin axioms.
The measure Sχ satisfies the requirements of positivity,
equiprobability, concavity and irreversibility. The associ-
ated Jaynes’ maximum entropy scheme also complies with
Jaynes thermodynamic relations. The properties verified
by Sχ suggest that it might be a useful measure for de-
scribing nonextensive physical phenomena as well as for
other practical applications.

The entropic functional Sχ grows as a power Nχ of
the size N of the system and is thus characterized by a
weak nonextensive behavior (as opposed to the strong,
exponential nonextensivity exhibited by Tsallis measure).
An attentive reader might think that a power law nonex-
tensive measure can be obtained in a trivial way by just
defining a new “entropy” equal to (SBoltzmann)χ. However,
this simple proposal would not lead to anything new. The
probability distributions maximizing (SBoltzmann)χ are the
same exponential distributions that maximize SBoltzmann.
This means that the standard (extensive) thermostatistics
would be obtained again. On the contrary, the entropic
functional Sχ furnishes a nontrivial new thermostatistics
that might be appropriate for dealing with some nonex-
tensive systems. As an application of the thermostatistical
formalism associated with Sχ we considered a ferromag-
netic Ising model with long-range interactions. We studied
numerically the concomitant scaling laws.

Tsallis thermostatistics, which has attracted a
great deal of attention recently [24–31], arises from
a nonextensive entropic measure Sq growing exponentially
with the size of the system. Now, if there are in nature
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extensive systems (that is, those successfully studied
within standard statistical mechanics and described by
Gibbs exponential distributions) as well as Tsallis’ strong
(exponentially) nonextensive systems, it is not unreason-
able to expect also the existence of systems exhibiting an
intermediate (weak) power-law kind of nonextensivity.

Let us consider a family of dynamical systems charac-
terized by a set of parameters λ. We assume that there is a
certain regionΣ in λ-space such that the system’s thermo-
dynamic behavior is extensive for λ ∈ Σ and nonextensive
otherwise. It is possible that, as a continuous change in
the parameters λ is considered, the system abruptly jumps
from an extensive regime to an exponentially nonextensive
one. Notice, however, that this kind of discontinuity would
be more drastic than the one associated with a change
of exponents (that is, the jump from one power-law to a
new power-law characterized by a different exponent). We
think that it would be physically more sensible if there is
an “onset of nonextensivity” boundary between the exten-
sive and nonextensive regions in λ-space, characterized by
a weak, power-law nonextensive regime. A suggestive anal-
ogy can be made here with the onset of chaos is nonlinear
dynamics. Consider, for instance, the well known Logis-
tic map. For values of the map’s parameter corresponding
to chaotic behavior the concomitant Lyapunov exponent
is positive and near trajectories diverge exponentially in
time. However, critical values of the map parameter asso-
ciated with a vanishing Lyapunov exponent still do exhibit
a form of “weak chaos”. In those critical situations, cor-
responding to the onset chaos, near trajectories do not
diverge exponentially in time: they diverge in a power-law
way [37,38].

It would be important to gain a further clarification of
the physical meaning of the parameter χ, and to under-
stand under what circumstances might nature choose to
maximize the functional Sχ. The only way to attain such
an understanding is by a detailed study of the dynamics of
particular nonextensive systems endowed with long range
interactions. We hope that our present contribution may
stimulate further work within this line of inquiry.
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